Math, asked by smartshoaib70, 4 months ago

If x+1/x=9 and x-1/x=6, then find the value of x´-1/x´.​

Answers

Answered by igibrahim07
0

Step-by-step explanation:

Answer

Consider x+

x

1

=9, squaring both sides we get,

(x+

x

1

)

2

=9

2

⇒x

2

+(

x

1

)

2

+(2×x×

x

1

)=81(∵(a+b)

2

=a

2

+b

2

+2ab)

⇒x

2

+

x

2

1

+2=81

⇒x

2

+

x

2

1

=81−2

⇒x

2

+

x

2

1

=79

We know that (a−b)

2

=a

2

+b

2

−2ab, substitute a=x and b=

x

1

as shown below:

(x−

x

1

)

2

=x

2

+(

x

1

)

2

−(2×x×

x

1

)

=79−2(∵x

2

+

x

2

1

=79)

=77

Therefore,

(x−

x

1

)

2

=77

⇒x−

x

1

77

Hence, x−

x

1

77

.

Answered by LaeeqAhmed
0

\color{red}\huge{\underline{\underline{\bf GIVEN\dag}}}

  •  \sf{x +  \frac{1}{x} = 9....(1) }
  •  \sf{x -  \frac{1}{x}  = 6....(2)}

\color{red}\huge{\underline{\underline{\bf SOLUTION\dag}}}

 \sf{ \purple{adding \: (1) \: and \: (2) : }}

 \implies \sf{2x} = 15

 \therefore \sf{x =  \frac{15}{2} }

 \sf{ \purple{now \: substitue \: x \: in : }}

 \sf{ {x}^{2} -  \frac{1}{ {x}^{2} }  }

 \implies   \sf {( \frac{15}{2} )}^{2}  -  \frac{1}{ ({ \frac{15}{2} )}^{2} }

 \implies \sf {\frac{225}{4} } -  \frac{4}{ 225  }

 \implies \sf{56.25 - 0.017}

 \orange{  \boxed{ \therefore{\sf{ {x}^{2} -  \frac{1}{ {x}^{2} }  } = 56.2 \: \:  (or) \:  \: \frac{281}{5}  }}}

Similar questions