Math, asked by deeepu966, 6 months ago

If x+1/x=9 and x-1/x=6, thus find the value of x^4-1/x^4

Answers

Answered by Anonymous
30

Answer :-

Given :-

  • \sf x + \frac{1}{x} = 9

  • \sf x - \frac{1}{x} = 6

To Find :-

Value of \sf x^4 - \frac{1}{x^4}

Solution :-

\sf x^4 - \frac{1}{x^4} = (x^2)^2 - (\frac{1}{x^2})^2

\sf = (x^2 + \frac{1}{x^2})(x^2 - \frac{1}{x^2})

\sf = [(x + \frac{1}{x})^2 - 2][(x)^2 - (\frac{1}{x})^2]

\sf = [(x + \frac{1}{x})^2 - 2](x + \frac{1}{x})(x - \frac{1}{x})

Substituting the values :-

\sf [(9)^2 - 2][9 \times 6]

\sf = (81 - 2)(54)

\sf = 79 \times 54

\sf = 4266

Answered by Anonymous
33

Given :-

  •   \rm x + \dfrac{1}{x} = 9

  •  \rm x  -  \dfrac{1}{x} = 6

To Find :-

 \rm x ^{4}   -  \dfrac{1}{x^{4}} = 6

Squaring both sides of   \rm x + \dfrac{1}{x} = 9

\rm \implies  \bigg(x +  \dfrac{1}{x}   \bigg) ^{2} =  {9}^{2}

Identity Used :- (a + b)² = a² + 2ab + b²

\rm \implies   {x}^{2}  + 2 \times   \cancel{x \times  \dfrac{1}{x}}  +  \dfrac{1}{ {x}^{2} }   =  81

\rm \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 81 - 2

\rm \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 79

Now, we will square both sides of  \rm x  -  \dfrac{1}{x} = 6

\rm \implies  \bigg(x  -   \dfrac{1}{x}   \bigg) ^{2} =  {6}^{2}

Identity Used :- (a - b)² = a² - 2ab + b²

\rm \implies   {x}^{2}   -  2 \times   \cancel{x \times  \dfrac{1}{x}}  +  \dfrac{1}{ {x}^{2} }   =  36

\rm \implies  {x}^{2}   -   \dfrac{1}{ {x}^{2} }  = 36 - 2

\rm \implies  {x}^{2}   -   \dfrac{1}{ {x}^{2} }  = 34

Thus, \rm \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 79

and \rm \implies  {x}^{2}   -   \dfrac{1}{ {x}^{2} }  = 34

Now,

 \rm x ^{4}   -  \dfrac{1}{x^{4}} = 6

So,  \rm \Bigg(  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \Bigg) \Bigg(   {x}^{2}  - \dfrac{1}{ {x}^{2} }  \Bigg)

Identity Used :- (a + b)(a - b) = a² - b²

 \rm  \dashrightarrow \Bigg( {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \Bigg) \Bigg(   {x}  +  \dfrac{1}{x} \Bigg) \Bigg( {x}  - \dfrac{1}{x} \Bigg)

We already have the values of them

Simply, subsituting them

→ 79 × 9 × 6

→ 79 × 54

→ 4266

Similar questions