Math, asked by 2409595tushar, 9 days ago

If x+1/x=9 and x²+1/x²=53, Find the value of x-1/x


don't spam .
answer as soon as possible​

Answers

Answered by choudharydaksh5109
1

Step-by-step explanation:

ANSWER IS SHOWN IN ABOVE IMAGE

Attachments:
Answered by perfectok10
1

Answer:

1) ± 5

Step-by-step explanation:

1) Given:  x  + \frac{1}{x} = 9 and x^{2}  + \frac{ 1 }{x^{2} } = 53

    Find: x - \frac{ 1}{x}

    (x  + \frac{1}{x})^{2} + (x- \frac{1}{x})^{2} = 2 (x^{2}  + \frac{ 1 }{x^{2} } )

    ( 9² + (x- \frac{1}{x})^{2}) = 2 (53)

    (x- \frac{1}{x})^{2} = 106 - 81

                  = 25

     x - \frac{ 1}{x}     = ± 5

The question can also be interpreted as:

2) Given: x  + \frac{1}{x} = 9 and x^{2}  + \frac{ 1 }{x^{2} } = 53

   Find:  x - \frac{ 1}{x}  

   (x- \frac{1}{x})^{2}  = x² + \frac{1}{x^{2} } - 2x * \frac{1}{x^{2} }                        (a + b)² = a² +b² -2ab)

                     = 53 - 2

                     = 51

   x - \frac{ 1}{x} =  \sqrt{51}

Similar questions