Math, asked by snchobi76, 9 months ago

If x+1/ x=9 evaluate x⁴+1/x⁴

Answers

Answered by Anonymous
4

x +  \frac{1}{x}  = 9 \\ squaring \: on \: both \: sides \\  {(x +  \frac{1}{x}) }^{2}  =  {(9)}^{2}  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(x)( \frac{1}{x} ) = 81 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 81 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 79

Now,

SQUARING ON BOTH SIDES

 {( {x}^{2} +  \frac{1}{ {x}^{2} })  }^{2}  =  {(79)}^{2}  \\   {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2( {x}^{2} )( \frac{1}{ {x}^{2} } ) = 6241 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 6241 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6239

Similar questions