Math, asked by fd3008, 1 day ago

If x+1/x = 9, find the value of x^4+1/x^4.

Answers

Answered by Kazoku
1236

If x + 1/x = 9 find the value of x⁴ + 1/x⁴

First Square both the sides

\mathtt{ {(x +  \frac{1}{x}) }^{2} } =  {(9)}^{2}  \\  \\ \implies\mathtt{{(x +  \frac{1}{x}) }^{2}  = 81} \\  \\ \implies\mathtt{ {x}^{2}  + 2 \times x \times  \frac{1}{x} +  {( \frac{1}{x}) }^{2}  = 81 } \\  \\ \implies\mathtt{ {x}^{2} + 2 +  \frac{1}{ {x}^{2} }  = 81 } \\  \\ \implies\mathtt{{x}^{2}  +  \frac{1}{ {x}^{2} }  = 79}

Now, square both the sides again

 \mathtt{ {( {x}^{2}  +  \frac{1}{2} )}^{2} =  {(79)}^{2}  }\\  \\ \implies\mathtt{{( {x}^{2}  +  \frac{1}{2} )}^{2} =6241}\\  \\ \implies\mathtt{ {x}^{4} + 2 +  \frac{1}{ {x}^{4} }  = 6241 } \\  \\ \implies\mathtt{ {x}^{4}  +  \frac{1}{ {x}^{4} } = 6239 \: ans }

Similar questions