Math, asked by 00sarthak00, 7 months ago

If x-1/x=9, find the value of x²+1/x²​

Answers

Answered by satyamsingh02003
1

Hence the answer is 79

hope it will help you

Attachments:
Answered by Asterinn
5

Given :

x -  \dfrac{1}{x}  = 9

To find :

 {x}^{2}  +  \dfrac{1}{{x}^{2} }

Solution :

 \implies {(x -  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +  { \dfrac{1}{x} }^{2}   -2. x. \dfrac{1}{x}

\implies {(x -  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +  { \dfrac{1}{x} }^{2}   -2

We know that :-

x -  \dfrac{1}{x}  = 9

\implies {9}^{2}  =  {x}^{2}  +  { \dfrac{1}{x} }^{2}   -2

we know that :- 9²=81

\implies 81 =  {x}^{2}  +  { \dfrac{1}{x} }^{2}   -2

\implies 81  + 2=  {x}^{2}  +  { \dfrac{1}{x} }^{2}

\implies 83=  {x}^{2}  +  { \dfrac{1}{x} }^{2}

Answer : 83

________________________

\large\bf\red{Learn\:More}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

_______________________

Similar questions