Math, asked by bhumika9130, 3 months ago

if x-1/x =9 find the value of x²+1/x² and x⁴+1/x⁴​

Answers

Answered by Anonymous
4

 \bf{Given}

 \sf \to \: x -  \dfrac{1}{x}  = 9

 \bf \: To \: find

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \\  \sf \to \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }

 \bf\:Now\:Take

 \sf \to \: x -  \dfrac{1}{x}  = 9

 \bf{Squaring\:on\:both\:sides}

 \sf \to \bigg(x -  \dfrac{1}{x}  \bigg) ^{2}  = (9) {}^{2}

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times  x \times  \dfrac{1}{x}  = 81

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 = 81

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 81 + 2

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 83

 \bf{Now \: Take }

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 83

 \bf{Squaring\:on\:both\:sides}

  \sf \to \:  \bigg( {x}^{2}  +  \dfrac{1}{ {x}^{2} } \bigg)^{2}    = (83) {}^{2}

 \sf \to \: ( {x}^{2} ) {}^{2}  +  \dfrac{1}{ ( {x}^{2} ) {}^{2} }  + 2 \times  {x}^{2}  \times  \dfrac{1}{ {x}^{2} }  = 6889

  \to\sf {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 = 6889

 \to \sf \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 6889 - 2

\to \sf \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 6887

 \bf \: Answer

\sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 83

\to \sf \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 6887

Answered by arunabalamohapatra
1

Answer:

given \:  : \\ x -  \frac{1}{x}  = 9 \\  \\ to \: find :  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  \:  \:  \: and \:  \:  \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  \\  \\ now \: take :  \\ x -  \frac{1}{x}  = 9 \\  \\ squaring \: on \: both \: side :  \\ (x -  \frac{1}{2} ) {}^{2}  = (9) {}^{2}  \\ \\   :  \implies {x}^{2}  +  \frac{1}{ {x}^{2} }   \times x  \:  \times  \frac{1}{x}  = 81 \\  \\  :  \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 81 \\  \\  :  \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 81 + 2 \\  \\   :  \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 83 \\  \\ now \: take :  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 83 \\  \\ squaring \: on \: both \: side :  \\ ( {x}^{2}  +  \frac{1}{ {x}^{2}  } ) {}^{2}  = (83) {}^{2}  \\  \\  :  \implies(x {}^{2}  {)}^{2}  +  \frac{1}{( {x}^{2}) {}^{2}  }  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 6889 \\  \\  :  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 6889 \\  \\  :  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6889 - 2 \\  \\  :  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6887 \\  \\ therefore :  \\  :  \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 83 \\ \\   :  \implies \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6887

Similar questions