Math, asked by virk51, 1 year ago

if x+1/x=9,then find the value of( i) X square +1/x square (ii) X cube + 1/x cube

Answers

Answered by Cutiepie93
4
Hello friends!!

If
x +  \frac{1}{x }  = 9
Then

i) {x}^{2} +  \frac{1}{ {x}^{2} }


x +  \frac{1}{x}  = 9

Squaring both sides,

 {(x +  \frac{1}{x}) }^{2}  = {(9)}^{2}


Using identity : ( a + b)² = a² + b² + 2ab


 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 81


 {x}^{2}  +  \frac{1}{ {x}^{2} }    + 2 = 81


 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 81 - 2



 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 79

_____________


ii) {x}^{3}   +  \frac{1}{ {x}^{3} }


x +  \frac{1}{x}  = 9


Cube both sides

 {(x +  \frac{1}{x} )}^{3}  =  {(9)}^{3}

Using identity : ( a + b)³ = a³ + b³ + 3ab ( a + b )


 {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x}) = 729


 {x}^{3}   +  \frac{1}{ {x}^{3} }   + 3(9) = 729



 {x}^{3}  +  \frac{1}{ {x}^{3} }  + 27 = 729

 {x}^{3}  +   \frac{1}{ {x}^{3} }  = 729 - 27


  {x}^{3} +  \frac{1}{ {x}^{3} }  = 702



______________

HOPE IT HELPS YOU..
Answered by vyaswanth
0
x+1/x=9
squaring on both sides
x square+1/x square+2*x*1/x=81
x square +1/x square=81-2=79

now second one
same as the first
instead of squaring do cubing
=>x cube + 1/x cube +3x*1/x(x+1/x)=729
=>x cube + 1/x cube + 3(9)=729
=>x cube+1/x cube=729-27=702
Similar questions