Math, asked by arpanambuj, 18 days ago

If x+1/x=9, then find the value of √x+1/√x.​

Answers

Answered by gsai1595
0

Step-by-step explanation:

x+1/x=9

(√x)^2 +(1/√x)^2=9

(√x)^2 +(1/√x)^2 + 2√x×1/√x=9+2

(√x + 1/√x)^2=11

√x + 1/√x=√11

Answered by suhail2070
0

Answer:

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{11} .

Step-by-step explanation:

using \:  \: x +  \frac{1}{x}  = 9 \:  \:  \:  \: (given) \\  \\  {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}^{2}  =  { \sqrt{x} }^{2}  +  \frac{1}{  {\sqrt{x}}^{2}  }  + 2 \sqrt{x} . \frac{1}{ \sqrt{x} }  \\  \\  = x +  \frac{1}{x}  + 2 \\  \\  = (x +  \frac{1}{x} ) + 2 \\  \\  = 9 + 2 \\  \\  = 11. \\  \\ therefore \:  \:  \:  \:  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{11} .

Similar questions