if x+1/x = 9, then find the value of x^3 + 1/x^3 by a^3 + b^3 identity
Answers
Answered by
2
Answer:
x³ + 1/x³ = 702
Note:
★ (a + b)² = a² + 2ab + b²
★ (a - b)² = a² - 2ab + b²
★ a² - b² = (a + b)(a - b)
★ (a + b)³ = a³ + b³ + 3ab(a + b)
★ (a - b)³ = a³ + b³ - 3ab(a - b)
★ a³ + b³ = (a + b)(a² - ab + b²)
★ a³ - b³ = (a - b)(a² + ab + b²)
Solution:
Given: x + 1/x = 9
To find: x³ + 1/x³ = ?
Now,
x³ + 1/x³ = (x + 1/x)•[x² - x•(1/x) + (1/x)²]
= (x + 1/x)•[x² - 1 + 1/x²]
= (x + 1/x)•[ x² + 2 + 1/x² - 3 ]
= (x + 1/x)•[ x² + 2•x•(1/x) + 1/x² - 3 ]
= (x + 1/x)•[ (x + 1/x)² - 3 ]
= 9•[ 9² - 3 ]
= 9•[81 - 3]
= 9•78
= 702
Hence,
Required answer is 702 .
Similar questions