If (x+1/x)=a then find (x²+1/x²), (x³+1/x³), (x⁴+1/x⁴), (x^5 +1/x^5), (x^6+1/x^6)
Answers
Answered by
5
hi friend,
given x+1/x=a
squaring on both sides, we get
=>x²+1/x²+2(x)(1/x)=a²
=>x²+1/x²=a²-2----------(1)
now x+1/x=a
cubing on both sides, we get
=>x³+1/x³+3(x)(1/x)(x+1/x)=a³
=>x³+1/x³+3(a)=a³
=>x³+1/x³=a³-3a-------(2)
now squaring (1),we get
=>x⁴+1/x⁴+2=(a²-2)²
=>x⁴+1/x⁴=(a²-2)²-2
now multiplying (1) and (2), we get
=>(x²+1/x²)(x³+1/x³)=(a²-2)(a³-3a)
=>x^5+1/x+x+1/x^5=(a²-2)(a³-3a)
=>x^5+1/x^5=(a²-2)(a³-3a)-a
now squaring (2),we get
=>(x³+1/x³)²=(a³-3a)²
=>x^6+1/x^6+2=(a³-3a)²
=>x^6+1/x^6=(a³-3a) ²-2
I hope this will help u
given x+1/x=a
squaring on both sides, we get
=>x²+1/x²+2(x)(1/x)=a²
=>x²+1/x²=a²-2----------(1)
now x+1/x=a
cubing on both sides, we get
=>x³+1/x³+3(x)(1/x)(x+1/x)=a³
=>x³+1/x³+3(a)=a³
=>x³+1/x³=a³-3a-------(2)
now squaring (1),we get
=>x⁴+1/x⁴+2=(a²-2)²
=>x⁴+1/x⁴=(a²-2)²-2
now multiplying (1) and (2), we get
=>(x²+1/x²)(x³+1/x³)=(a²-2)(a³-3a)
=>x^5+1/x+x+1/x^5=(a²-2)(a³-3a)
=>x^5+1/x^5=(a²-2)(a³-3a)-a
now squaring (2),we get
=>(x³+1/x³)²=(a³-3a)²
=>x^6+1/x^6+2=(a³-3a)²
=>x^6+1/x^6=(a³-3a) ²-2
I hope this will help u
Answered by
3
if x+1/x=a,
i) then, x²+1/x²=(x+1/x)²-2 ⇒a-2,
ii) then,x³+1/x³=(x+1/x)³-3(x+1/x) ⇒a³-3a
iii)then, x^4+1/x^4=(x+1/x)^4-(2)^2⇒(a-2)²
iv)then,x^5+1/x^5=(x+1/x)^5=((x+1/x)²-2)((x+1/x)³-3(x+1/x))=a^5-5(x^3+2x+2/x+1/x^3),
v)x^6+1/x^6=((x+1/x)³)²+(-3(x+1/x))²=(a³-3a)²,..
i) then, x²+1/x²=(x+1/x)²-2 ⇒a-2,
ii) then,x³+1/x³=(x+1/x)³-3(x+1/x) ⇒a³-3a
iii)then, x^4+1/x^4=(x+1/x)^4-(2)^2⇒(a-2)²
iv)then,x^5+1/x^5=(x+1/x)^5=((x+1/x)²-2)((x+1/x)³-3(x+1/x))=a^5-5(x^3+2x+2/x+1/x^3),
v)x^6+1/x^6=((x+1/x)³)²+(-3(x+1/x))²=(a³-3a)²,..
Similar questions
English,
8 months ago
Computer Science,
8 months ago
History,
8 months ago
English,
1 year ago
Science,
1 year ago