Math, asked by anantakolay8921, 7 months ago

If x-1/X is 4, then find x²+1/x² and x⁴+1/x⁴

Answers

Answered by Anonymous
42

\bf{\underline{Given}}

\sf{x-\dfrac{1}{x} = 4}

\bf{\underline{To\:Find}}

  • \sf{ x^2 + \dfrac{1}{x^2}}

  • \sf{x^4 + \dfrac{1}{x^4}}

\bf{\underline{Solution}}

\sf{x-\dfrac{1}{x} = 4}

\sf{\underline{By\:squaring\:both\:the\:sides}}

= \sf{\bigg(x-\dfrac{1}{x}\bigg)^2 = (4)^2}

= \sf{x^2 - 2\times x\times \dfrac{1}{x} + \dfrac{1}{x^2} = 16}

= \sf{x^2 - 2 + \dfrac{1}{x^2} = 16}

= \sf{x^2 + \dfrac{1}{x^2} = 16+2}

= \sf{x^2 + \dfrac{1}{x^2} = 18}

\sf{\therefore x^2 + \dfrac{1}{x^2} = 18}

Now,

We have,

\sf{x^2 + \dfrac{1}{x^2} = 18}

\sf{\underline{By\:squaring\:both\:the\:sides}}

= \sf{\bigg(x^2 + \dfrac{1}{x^2}\bigg)^2 = (18)^2}

= \sf{(x^2)^2 + 2\times x^2 \times\dfrac{1}{x^2} + \bigg(\dfrac{1}{x^2}\bigg)^2 = 324}

= \sf{x^4 + 2 + \dfrac{1}{x^4} = 324}

= \sf{x^4 + \dfrac{1}{x^4} = 324 - 2}

= \sf{x^4 + \dfrac{1}{x^4} = 322}

\sf{\therefore x^4 + \dfrac{1}{x^4} = 322}

Similar questions