Math, asked by angelabinoy07, 8 months ago

if x+1/x=root 2 evaluate x^3+1/x^3

Answers

Answered by urprahlad
0

Answer:

Step-by-step explanation: hi...

Answered by ThinkingBoy
1

x+\frac{1}{x} = \sqrt{2}

We have the identity

\large\black\boxed{(a+b)^2 = a^2+b^2+2ab}

Using the above identity,

(x+\frac{1}{x})^2 = {2}

x^2+\frac{1}{x^2}+2=2

x^2+\frac{1}{x^2}=0

We have the identity

\large\black\boxed{(a^3+b^3) = (a+b)(a^2+b^2-ab)}

Using the above identity

x^3+\frac{1}{x^3} = (x+\frac{1}{x})(x^2+\frac{1}{x^2}-1)

Substitute known values

x^3+\frac{1}{x^3} = \sqrt{2} *(0-1)

\huge\black\boxed{x^3+\frac{1}{x^3} = -\sqrt{2}}

Similar questions