Math, asked by ashwinrawat39, 10 months ago

if x +1/x = root 2 find (a) x3 +1/x3 (b) x2 + 1/x2

Answers

Answered by MANTUMEHER
3

Answer:

a=-√2

b=0

Step-by-step explanation:

x +  \frac{1}{x}  =  \sqrt[]{2}  \\  cube \: both \: side \: we \: get \\  {(x +  \frac{1}{x} )}^{3}    =  { \sqrt[]{2} }^{3 }  \\  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 2 \sqrt{2}  \\  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times  \sqrt{2}  = 2 \sqrt{2}  \\  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 2 \sqrt{2 }  - 3 \sqrt{2}  =  -  \sqrt{2}  \\  \\ now \: square \: bth \: side \: the \: first \: equatin \:  \\  {(x +  \frac{1}{x}  )}^{2}  =  {( \sqrt{2}) }^{2}  \\  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}  = 2 \\  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 2 \\  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2 - 2 = 0

Similar questions