Math, asked by Ang0leyasigar, 1 year ago

If x+1/x=root 3 find the value of x cube + 1/x cube

Answers

Answered by BrainlyQueen01
304
Hi there!

_______________________

Given :

x +  \frac{1}{x}  =  \sqrt{3}

To find :

x {}^{3}  +  \frac{1}{x {}^{3} }

Solution:

x +  \frac{1}{x}  =  \sqrt{3}  \\  \\  \bold{on \: cubing \: both \: sides.} \\  \\ (x +  \frac{1}{x} ) {}^{3}  = ( \sqrt{3} ){}^{3}  \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}} + 3(x +  \frac{1}{x} )  = 3 \sqrt{3}  \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}} + 3 \times  \sqrt{3}  = 3 \sqrt{3}  \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}} = 3 \sqrt{3}  - 3 \sqrt{3}  \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}} = 0


_______________________

Thanks for the question!
Answered by PoojaBurra
11

Given: x + 1/x = √3

To find: The value of x³ + 1/x³.

Solution:

Since the value of (x + 1/x) is given in the question, the value of (x² + 1/x²) can be calculated by squaring the term (x + 1/x) and then, rearranging the values in it.

(x + \frac{1}{x} )^{2} = x^{2} + \frac{1}{x^{2} } + 2

(\sqrt{3})^{2} = x^{2} + \frac{1}{x^{2} } + 2

x^{2} + \frac{1}{x^{2} } = 3-1

            = 2

So, the value of (x² + 1/x²) is found to be 2. Now, the value of (x³ + 1/x³) can be calculated by multiplying the term (x + 1/x) with (x² + 1/x²) and rearranging the terms.

(x+ \frac{1}{x}) (x^{2} + \frac{1}{x^{2} } ) = \sqrt{3} * 2

x^{3} + \frac{x}{x^{2} } + \frac{x^{2} }{x} + \frac{1}{x^{3}} = 2\sqrt{3}

x^{3} + \frac{1}{x} + {x} + \frac{1}{x^{3}} = 2\sqrt{3}

x^{3} + \frac{1}{x^{3}} = 2\sqrt{3} - (x+\frac{1}{x} )

             = 2\sqrt{3} - \sqrt{3}

             = \sqrt{3}

Therefore, the value of x³ + 1/x³ is √3.

Similar questions