Math, asked by richadevaraj4, 9 months ago

if x+1/x =root 3,find value of x2+1/x2

Answers

Answered by Abhishek474241
25

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{X+\dfrac{1}{X}}=√3

{\sf{\green{\underline{\large{To\:find}}}}}

\tt{X^2+\dfrac{1}{X^2}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=√3

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(√3)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=3

\implies\tt{3=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{3=X^2+\dfrac{1}{X^2}+2}

\implies\tt{3-2=X^2+\dfrac{1}{X^2}}

\implies\tt{1=X^2+\dfrac{1}{X^2}}

Additional Information

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

¶utting value

\implies\tt{X^3+\dfrac{1}{X^3}=\sqrt{3}(1-1)}

\implies\tt{X^3+\dfrac{1}{X^3}=\sqrt{3}(0)}

\implies\tt{X^3+\dfrac{1}{X^3}={0}}

Answered by mathematicalcosmolog
8

Step-by-step explanation:

The required answer is 1

Attachments:
Similar questions