Math, asked by rakeshhidau83, 1 month ago

if x + 1 / x = root 5 find the value of x² + 1/ x² and x⁴ + 1/ x⁴.​

Answers

Answered by amansharma264
23

EXPLANATION.

⇒ (x + 1/x) = √5.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (√5)².

⇒ (x)² + (1/x)² + 2(x)(1/x) = 5.

⇒ (x)² + (1/x)² + 2 = 5.

⇒ x² + 1/x² = 5 - 2.

⇒ x² + 1/x² = 3. - - - - - (1).

Again squaring on both sides of the equation, we get.

⇒ [x² + 1/x²]² = (3)².

⇒ (x²)² + (1/x²)² + 2(x²)(1/x²) = 9.

⇒ x⁴ + 1/x⁴ + 2 = 9.

⇒ x⁴ + 1/x⁴ = 9 - 2.

⇒ x⁴ + 1/x⁴ = 7. - - - - - (2).

Answered by Anonymous
59

 \bf \huge{Given}

\bf{x +  \frac{1}{x} =  \sqrt{5} }  \\

 \small \text  \pink{So when squaring both the sides we get }

\sf \red{(x  +  \frac{1}{x}  {)}^{2}  =  5} \\

\sf \pink{ {x}^{2}  +  \frac{1}{ {x}^{2}} =(x +  \frac{1}{ {x}^{2} } ) - 2   \times x   \times   \frac{1}{x}  } \\

\bf{SINCE}

\bf \orange{ {a}^{2}  +  {b}^{2}  = (a + b {)}^{2}  -  2ab}

 \bf \red{ = {5 - 2} \:  \:  \:  \:  \:  \:  \sf{since \: (x +  \frac{1}{x }  {)}^{2}  = 5}}

 >  >   \bf \huge \boxed{3}

 \small \text \orange{Now when we again square on both side we get}

 \bf \purple{ =( {x}^{4}  +  \frac{1}{ {x}^{4} }) =( {x}^{2} {)}^{2}  +  (\frac{1}{ {x}^{2} }  {)}^{2} } \\

= \sf \red{( {x}^{2} +  \frac{1}{ {x}^{2} } {)}^{2}   - 2 \times  {x}^{2}  \frac{1}{ {x}^{2} } }\\

\bf{SINCE}

\bf \orange{ {a}^{2}  +  {b}^{2}  = (a + b {)}^{2}  -  2ab}

\bf \green{( {3)}^{2}  - 2\:  \:  \:  \: since \:  ({x}^{2} +  \frac{1}{ {x}^{2} } = 3 ) }

\bf \purple{ = 9 - 2 }

 >  >   \bf \huge \boxed{7}

  • refer the attachment
Attachments:
Similar questions