if x+1/x = root 5 find x2 +1/x2 and x4+1/x4
Answers
Answered by
91
X+1/x=√5 (given)
Now,
(X+1/x)^2 = x^2 + 1/x^2 + 2
(√5)^2 = x^2 + 1/x^2 + 2
5 = x^2 + 1/x^2 + 2
5-2 = x^2 + 1/x^2
3 = x^2 + 1/x^2
(X^2 +1/x^2)^2 = (x^2)^2 +(1/x^2)^2 + 2
(3)^2 = x^4 + 1/x^4 + 2
9 = x^4 + 1/x^4 + 2
9 - 2 = x^4 + 1/x^4
7 = x^4 + 1/x^4
Answered by
57
Answer:
x²+1/x²=3 and x^4+1/x^4=7
Step-by-step explanation:
x+1/x = √5
squaring both sides
(x+1/x)² = (√5)²
x²+1/x²+2x*1/x=5
x²+1/x²+2=5
x²+1/x²=5-2=3
x²+1/x²=3-------------------------(1)
squaring both sides
(x²+1/x²)²=3²
x^4+1/x^4+2x² *1/x²=9
x^4+1/x^4+2=9
x^4+1/x^4=9-2=7
Hence x^4+1/x^4=7-------------(2)
Similar questions