Math, asked by Bidyapb621, 17 days ago

If x+1/x=sq.rt of 3, find the value of 1. x^2 + 1/x^2 2. x^4+1/x^4

Answers

Answered by xboy4949
0

Answer:

1,-1

Step-by-step explanation:

x+  \frac{1}{x}  =  \sqrt{3}

{x}^{2}  + 2 \times x \times  \frac{1}{x}  +  { \frac{1}{{x}^{2} }} = 3

 {x}^{2}  +   \frac{1}{ {x}^{2} }  = 1

( {x}^{2}  +  \frac{1}{ {x}^{2} } )^{2}  = 1

  {x}^{4}  + 2 +  \frac{1}{ {x}^{4} } = 1

 {x}^{4}  +  \frac{1}{ {x}^{4} }  =  - 1

Similar questions