Math, asked by umasenthil6677, 1 year ago

if x +1/x =sqrt6, find the value of x^2+1/2

Answers

Answered by LovelyG
17

Correct question: If x + 1/x = √6, find the value of x² + 1/x².

Answer:

\boxed{ \bf  \therefore \:  {x}^{2}  +  \frac{1}{x {}^{2} } = 4}

Step-by-step explanation:

Given that ;

 \implies \sf x +  \frac{1}{x}  =  \sqrt{6}  \\  \\ \bf On \: squaring \: both \: sides :  \\  \\  \implies \sf (x +  \frac{1}{x} ) {}^{2}  = ( \sqrt{6} ) {}^{2}  \\  \\  \implies \sf  {x}^{2}  +  \frac{1}{x {}^{2} }  + 2 \times x \times  \frac{1}{x}  = 6 \\  \\ \implies \sf  {x}^{2}  +  \frac{1}{x {}^{2} } + 2 = 6 \\  \\ \implies \sf  {x}^{2}  +  \frac{1}{x {}^{2} } = 6 - 2 \\  \\ \boxed{ \bf  \therefore \:  {x}^{2}  +  \frac{1}{x {}^{2} } = 4}


umasenthil6677: thx a lot
LovelyG: Welcome :)
kunal1474: please answer my quesion
kunal1474: @https://brainly.in/question/10314212
kunal1474: please
kunal1474: I beg
Answered by Anonymous
12

\bf{\large{\underline{\underline{Correct \:Question:-}}}}

If x + 1/x = √6 , Find the value of x² + 1/x²

\bf{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{{x}^{2} +  \dfrac{1}{ {x}^{2}} = 4}}

\bf{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x + \dfrac{1}{x} = \sqrt{6}}

To find :- \sf{x^2 + \dfrac{1}{x^2}}

Solution :-

x + \dfrac{1}{x} = \sqrt{6}

By squaring on both the sides :-

 {(x +  \dfrac{1}{x})}^{2} =  {( \sqrt{6})}^{2}

We know that, (a + b)² = a² + b² + 2ab

Here a = x, b = 1/x

By substituting the values in the identity we have :-

 {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2(x)( \dfrac{1}{x}) = 6

 {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 = 6

 {x}^{2} +  \dfrac{1}{ {x}^{2} } = 6 - 2

 {x}^{2} +  \dfrac{1}{ {x}^{2}} = 4

\boxed{\bf{{x}^{2} +  \dfrac{1}{ {x}^{2}} = 4}}

\bf{\large{\underline{\underline{Identity\:Used:-}}}}

(a + b)² = a² + b² + 2ab

\bf{\large{\underline{\underline{Some\:Important\:Identities:-}}}}

[1] (a + b)² = a² + b² + 2ab

[2] (a - b)² = a² + b² - 2ab

[3] (a + b)(a - b) = a² - b²

[4] (x + a)(x + b) = x² + (a + b)x + ab


umasenthil6677: thx
Anonymous: Welcome
kunal1474: Nice answer
kunal1474: Please answer my question
Similar questions