Math, asked by lavanyapandey12, 2 months ago

if x-1/x=\sqrt{5}, find the value of x^4+1/x^4

Answers

Answered by harshini196
1

Answer:

527

details

( x + 1/x) = 5

( x + 1/x)^2 =25

x^2 + 2 +1/x^2 =25

x^2 + 1/x^2 = 23

( x^2 + 1/x^2)^2 = 23^2 = 529

x^4 +2 + 1/x^4 = 529

x^4 +1/x^4 = 52

Answered by SrijanShrivastava
2

x -  \frac{1}{x}  =  \sqrt{5}

 {x}^{2}  -  \sqrt{5} x - 1 = 0

 \implies x =  { \phi}^{2} ,   - \frac{1}{ \phi ^{2} }

 \phi =  \frac{ \sqrt{5} + 1 }{4}

Thus,

 \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  =   { \phi}^{4}   +  { \phi}^{ - 4}

 =  3\phi + 2+ (1  -  \phi) {}^{4}

 = (3 \phi + 2 )2+ 7    - 6 \phi - 4

 =  \cancel{6 \phi} +\cancel{ 4} + 7 - \cancel{6 \phi }- \cancel4

 = 7

Similar questions