Math, asked by Princeroar, 11 months ago

If x+1/x = underroot 3. Find the value of x3+1/x3

Answers

Answered by Anonymous
6

\mathfrak{\large{\underline{\underline{Correct \: Question:-}}}}

If x + 1/x = √3. Find the value of x³ + 1/x³

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{ \tt {x}^{3} +  \dfrac{1}{ {x}^{3}} = 0}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :-  \tt x +  \dfrac{1}{x} =  \sqrt{3}

To find :-  \tt x^3 +  \dfrac{1}{x^3}

Solution :-

\tt x +  \dfrac{1}{x} =  \sqrt{3}

Cubing on both sides

\tt (x +  \dfrac{1}{x})^{3}  =  (\sqrt{3})^{3}

We know that (x + y)³ = x³ + y³ + 3xy(x + y)

Here x = x, y = 1/x

By substituting the values in the identity we have

\tt  {x}^{3} +  \dfrac{1}{ {x}^{3} } + 3(x)( \dfrac{1}{x})(x +  \dfrac{1}{x}) = 3 \sqrt{3}

\tt  {x}^{3} +  \dfrac{1}{ {x}^{3}} + 3(x +  \dfrac{1}{x}) = 3 \sqrt{3}

\tt  {x}^{3} +  \dfrac{1}{ {x}^{3}} + 3( \sqrt{3}) = 3 \sqrt{3}

[Since given that  \bf x +  \dfrac{1}{x} =  \sqrt{3} ]

\tt  {x}^{3} +  \dfrac{1}{ {x}^{3}} + 3 \sqrt{3} = 3 \sqrt{3}

\tt  {x}^{3} +  \dfrac{1}{ {x}^{3}}= 3 \sqrt{3} - 3 \sqrt{3}

\tt  {x}^{3} +  \dfrac{1}{ {x}^{3}} = 0

\Huge{\boxed{ \sf {x}^{3} +  \dfrac{1}{ {x}^{3}} = 0}}

Answered by Anonymous
22

x + \dfrac{1}{x} = √3

________ [GIVEN]

• We have to find the value of x³ + \dfrac{1}{ {x}^{3} }

_______________________________

=> x + \dfrac{1}{x} = √3

• Take cube on both sides..

=> ( {x \:  +  \:  \dfrac{1}{x}) }^{3} = (√3)³

=> x³ + \dfrac{1}{ {x}^{3} } + 3x × \dfrax{1}{x} (x \:  +  \:  \dfrac{1}{x}) = 3√3

=> x³ + \dfrac{1}{ {x}^{3} } + 3(√3) = 3√3

=> x³ + \dfrac{1}{ {x}^{3} } = 3√3 - 3√3

______________________________

x³ + \dfrac{1}{ {x}^{3} } = 0

___________ [\bold{ANSWER}]

______________________________

✡ Used identity :

(a + b)³ = a³ + b³ + 3ab(a + b)

______________________________

Similar questions