Math, asked by devanshagra21, 7 months ago

If x ∝ 1/y, then prove that the value of (x+y) wiil be least when x=y​

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow x\propto\dfrac{1}{y}

Let,

\longrightarrow x=\dfrac{k}{y}

where k is a constant and does not vary with x and y. So,

\longrightarrow xy=k

By AM - GM inequality, we have,

\longrightarrow \dfrac{x+y}{2}\geq\sqrt{xy}

\longrightarrow x+y\geq2\sqrt k

Here \sqrt k\geq0\quad\!\forall k\in\mathbb{R}. So x+y is minimum when,

\longrightarrow\sqrt k=0

\longrightarrow k=0

\longrightarrow xy=0

\Longrightarrow x=0\quad OR\quad y=0\quad\quad\dots(1)

And so,

\longrightarrow x+y=2\sqrt k

\longrightarrow x+y=0

\longrightarrow x=-y

So (1) follows,

\longrightarrow -y=0\quad OR\quad -x=0

\longrightarrow y=0\quad OR\quad x=0

However, we get that x+y will be the least when x=y=0.

Hence Proved!

Similar questions