if x=1/y then show that dx/dy=-√(1+x^4/1+y^4)
Answers
Answered by
2
Step-by-step explanation:
y=log[
(1+x)
−
(1−x)
(1+x)
+
(1−x)
]
1/2
Put x=sin2θ
y=log[
(1+sin2θ)
−
(1−sin2θ)
(1+sin2θ)
+
(1−sin2θ)
]
1/2
∵
1±sin2θ
=cosθ±sinθ
y=log[
(cosθ+sinθ)−(cosθ−sinθ)
(cosθ+sinθ)+(cosθ−sinθ)
]
1/2
∴y=
2
1
log(
2sinθ
2cosθ
)
y=
2
1
logcotθ
∴
dθ
dy
=
2
1
cotθ
1
.(−cosec
2
θ)=−
2cosθsinθ
1
=−
sin2θ
1
∴
dx
dy
=
dθ
dy
.
dx
dθ
=−
sin2θ
1
.
2cos2θ
1
(∵x=sin2θ⇒
dθ
dx
=2cos2θ)
=−
2x
1−x
2
1
Similar questions