Math, asked by Mandy312, 1 year ago

if x√(1+y) + y√(1+x)=0 find dy/dx

Answers

Answered by BrainlyWarrior
3
\textbf{Hello Mate}

\textbf{Your Answer}>>>

x \sqrt{1 + y} + y \sqrt{1 + x} = 0

x \sqrt{1 + y} = - y \sqrt{1 + x}

\textbf{Now Squaring Both Sides}>>>

\upper{x}^{2} ( 1 + y ) = \upper{y}^{2} ( 1 + x )

\upper{x}^{2} ( 1 + y ) - \upper{y}^{2} ( 1 + x ) = 0

\upper{x}^{2} + \upper{x}^{2}y - \upper{y}^{2} - \upper{y}^{2}x = 0

\textbf{Now Arranging}>>>

\upper{x}^{2} - \upper{y}^{2} + \upper{x}^{2}y - \upper{y}^{2}x = 0

\textbf{We Know that}

\upper{a}^{2} - \upper{b}^{2} = ( a - b )( a + b )

\textbf{Applying Formulla}>>>

( x + y ) ( x - y ) + xy( x - y ) = 0

\textbf{ Taking x- y common}>>>

( x - y ) [ x + y + xy ] = 0

x + y + xy = 0

x + y ( 1 + x ) = 0

y ( 1 + x ) = - x

y = \frac{- x}{1 + x}

\textbf{Now Differentiate Both Sides wrt. x}

\textbf{So we get }>>>

\frac{dy}{dx} = - 1 / ( 1 + x )^ 2

Be Brainly..

@karangrover12
Similar questions