if x^10+1/x^10 =3 than x^50+1/x^50=?
Answers
Solution :
Given that ;
x¹⁰ + 1/x¹⁰ = 3
Squaring this :
( x¹⁰ + 1/x¹⁰)² = 9
=> x²⁰ + 1/x²⁰ + 2 = 9
=> x²⁰ + 1/x²⁰ = 7 ....... (1)
x¹⁰ + 1/x¹⁰ = 3
Cubing this ;
( x¹⁰ + 1/x¹⁰ )³ = 3³
=> x³⁰ + 1/³⁰ + 2 = 27
=> x³⁰ + 1/x³⁰ = 25. ....... (2)
(1) × (2)
=> ( x²⁰ + 1/x¹⁰)( x³⁰ + 1/x³⁰) = 25 × 7 = 175
=> x⁵⁰ + 1/x⁵⁰ + 3 = 175
=> x⁵⁰ + 1/x⁵⁰ = 172 .
This is the required answer .
__________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
__________________________