Math, asked by poreddiwarvicky, 6 months ago

,if x=10 find y
say answer ​

Attachments:

Answers

Answered by GlobalGenius
2

Answer:

5)x=2/5 and x= -2/3

6)y=4

Step-by-step explanation:

5)Given- P(x)= 15x²+4x-4

To find the zeroes of polynomial.

Sol: P(x)= 15x²+4x-4

A=+4

M=15×(-4)

=15x²+10x-6x-4

=5x(3x+2)-2(3x+2)

=(5x-2)(3x+2)=0

=x=2/5 and x=-2/3

6)Given- x is proportional to 1/√y when x=40, y=16 and if x=10

Then find the value of y

Sol: 40:16::10:y

40y=160

y=160/40

y= 4

Hope this Help you....

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \:  \large \orange{ \bold{ \underline{ \underline{ \: step \: by \: step \: explaination : }}}}

 \:  \bf{(3) \: factorise : 15 {x}^{2} + 4x - 4 = 0}

 \:  \qquad  \implies \displaystyle \sf{15 {x}^{2}  + 4x - 4 = 0}

 \:  \:  \\  \qquad \implies \displaystyle \sf{ 15 {x}^{2}  + 10x - 6x - 4 = 0}

 \:  \: \\   \qquad \implies \displaystyle \sf \: 5x(3x + 2) - 2(3x  + 2) = 0

 \:  \:  \qquad \implies \displaystyle \sf (3x + 2)(5x - 2) = 0

 \:  \:  \:  \qquad \implies \displaystyle \sf \: x =  - \frac{2}{3}  \:  \:  \: and \: x =  \frac{2}{5}

 \:  \:  \:  \qquad \bigstar \boxed{ \underline{ \rm{roots \: are \: x =  \frac{ - 2}{3}  \: \: and \: x =  \frac{2}{5} }}}

\color{cyan}{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

 \:  \bf{(2) x   \propto} \:  \frac{1}{ \sqrt{y} }  \:  \:  \: when  \:  \: x =40 \: and \:   \: y = 16

 \:  \bf{if \: x = 10 \: then \: y = to \: find}

 \:  \implies \displaystyle \sf{x  \propto  \frac{1}{ \sqrt{y} } }

 \:  \:  \implies \displaystyle \sf \: 40 \propto \:  \frac{1}{ \sqrt{16} }

 \:  \implies \displaystyle \sf \: 40 \propto \frac{1}{4}

 \:  \:  \implies \displaystyle \sf \: 10 \propto \:  \frac{1}{ \sqrt{y} }

 \:  \: \\   \implies \displaystyle \sf \therefore \: x =  \frac{k}{ \sqrt{y} }  \: where \: k \: is \: constant \: of \: variation

 \:  \:  \implies \displaystyle \sf \: x \times  \sqrt{y}  = k

 \:  \:  \implies \displaystyle \sf \: when \: x = 40 \: and \: y = 16

 \:  \implies \displaystyle \sf \:  \therefore \: k = 40 \times  \sqrt{16}

 \:  \implies \displaystyle \sf \: 40 \times 4 = 160

 \:  \:   \\  \implies \displaystyle \sf \: so \: the \: equation \: of \: variation \: is

 \:  \:  \implies \displaystyle \sf \: x \sqrt{y}  = 160

  \:  \implies \displaystyle \sf \: when \: x = 10

 \:  \:  \implies \displaystyle \sf \: 10 \sqrt{y}  = 160

 \:  \:  \implies \displaystyle \sf \:  \sqrt{y}  =  \frac{160}{10}   = \cancel \frac{160}{10}  =  \frac{16}{1}

 \:  \:  \implies \displaystyle \sf \:  \sqrt{y}  = 16

 \:  \:  \implies \displaystyle \sf \: y =  {(16)}^{2}

 \:  \:  \implies \displaystyle \sf \: y = 256

 \:  \:  \bigstar \boxed{ \boxed{ \underline {\bf{the \: value \: of \: y \: is \: 256}}}}

\color{red} {▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Similar questions