Math, asked by honey19011, 1 year ago

if x=(100)^a, y=(10000)^b and z=(10)^c, express log (10*√y)/x²*z³) in terms of a,b,c.

Answers

Answered by abhi569
139
please mark it as brainlist, if it is correct.
as logx=2a, logy=4b, logz=c
Attachments:
Answered by pinquancaro
55

Answer:

\log\frac{(10\times \sqrt y)}{x^2z^3}=1+2b-4a-3c

Step-by-step explanation:

Given : If x=(100)^a,\ y=(10000)^b,\ z=(10)^c

To find : Express \log\frac{(10\times \sqrt y)}{x^2z^3} in terms of a,b,c?

Solution :

x=(100)^a

x=(10^2)^a

x=(10)^{2a}

Taking log both side,

\log x=2a ....(1)

y=(10000)^b

y=(10)^{4b}

Taking log both side,

\log y=4b .....(2)

z=(10)^{c}

Taking log both side,

\log z=c .....(3)

Now, We expand the expression

\log\frac{(10\times \sqrt y)}{x^2z^3}=\log 10+\log\sqrt y-\log x^2-\log z^3

\log\frac{(10\times \sqrt y)}{x^2z^3}=1+\frac{1}{2}\log y-2\log x-3\log z

Using (1), (2) and (3),

\log\frac{(10\times \sqrt y)}{x^2z^3}=1+\frac{1}{2}(4b)-2(2a)-3(c)

\log\frac{(10\times \sqrt y)}{x^2z^3}=1+2b-4a-3c

Therefore, \log\frac{(10\times \sqrt y)}{x^2z^3}=1+2b-4a-3c

Similar questions