Math, asked by wwwrumaroy, 1 year ago

If x=√11+6√2 then find the value of x+1/x

Answers

Answered by mysticd
0

Solution:

i) x = √11+6√2

= √11+2√9×2

=√(9+2)+2(9×2)

=√(√9)²+(√2)²+2*√9*√2

=√(√9 + √2)²

= √9 + √2

= 3+√2 ----(1)

ii) 1/x = 1/(3+√2)

= (3-√2)/[(3+√2)(3-√2)]

= (3-√2)/[3²-(√2)²

= (3-√2)/(9-2)

=(3-√2)/7 ---(2)

iii) x + 1/x

= 3+√2+(3-√2)/7

= [7(3+√2)+3-√2]/7

= (21+7√2+3-√2]/7

= (24+6√2)/7

Or

= [6(4+√2)/7]

••••

Answered by balakrishna40
0

x =  \sqrt{11 + 6 \sqrt{2} }

x {}^{2}  = 11 + 6 \sqrt{2}

x {}^{2}  = {3}^{2} + ( \sqrt{2}  ) {}^{2}  + 2 \times 3 \times  \sqrt{2}  \\ x {}^{2}  = (3 +  \sqrt{2} ) {}^{2}

x =  3 +  \sqrt{2}

 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{2} }

 =  \frac{3 -  \sqrt{2} }{(3 +  \sqrt{2} )(3 -  \sqrt{2)} }

 \frac{3 -  \sqrt{2} }{9 - 2}  =  \frac{3 -  \sqrt{2} }{7}

x +  \frac{1}{x}  = 3 +  \sqrt{2 }  +  \frac{3 -  \sqrt{2} }{7}

 =  \frac{21 + 7 \sqrt{2}  + 3 -  \sqrt{2} }{7}  {}

 \frac{24 + 6 \sqrt{2} }{7}


balakrishna40: mark as brainliest
Similar questions