If x = 111 ….. 1 (20 digits), y = 333 …… 3 (10 digits) and z = 222 … 2 (10 digits), then what is x- y2z equal to
Answers
Answered by
2
120932351 that's the correct ans buddy
Answered by
22
Answer:
“The value of x-y^2/z is equal to 1⃣”.
Step-by-step explanation:
It is given that,
x = 1 1 1 ... 1 ( 2⃣0⃣ digits)
y = 3 3 3 ... 3 ( 1⃣0⃣ digits)
z = 2 2 2 ... 2 ( 1⃣0⃣ digits)
Now,
x = 1 + 10 + 10^2 + ... + 10^19
= 1 [10^(20)-1] / (10-1)
y = 3 ( 1 + 10 + 10^2 + ... + 10^9 )
= 3 * 1[ 10^( 10)-1] / (10-1)
z = 2 ( 1 + 10 + 10^2 + ... + 10^9 )
= 2 * 1[10^(10)-1] / (10-1)
Therefore,
x - y^2
= [10^(10)+1][10^(10)-1] / 9 - 9 * [10^(10)-1][10^(10)-1] / 81
= {[10^(10)+1][10^(10)-1] - [10^(10)-1][10^(10)-1]} / 9
= [10^(10)-1] {10^(10)+1 - 10^(10)+1} / 9
= 2 * [10^(10)-1] / 9
= z
Therefore,
x - y^2 = z
➡️ x - y^2 / z = 1
❤ HOPE IT HELPS! ❤
REGARDS.
Similar questions
Accountancy,
7 months ago
Hindi,
7 months ago
Science,
7 months ago
Business Studies,
1 year ago
Chemistry,
1 year ago
English,
1 year ago