if x = -12 is the zero of the polynomial 8x3 -ax2 -x+2 find a
Answers
Step-by-step explanation:
x = -12 is the zero of the polynomial
simply put the value of x in a given equation then we can get our answer, I. e a
➡
➡
➡
➡
➡
Verification :
➡ = 0
➡ = 0
➡ = 0
Answer:
Step-by-step explanation:
x = -12 is the zero of the polynomial
8x^3 - ax^2-x+28x3−ax2−x+2
simply put the value of x in a given equation then we can get our answer, I. e a
8x^3 - ax^2-x+28x3−ax2−x+2
➡8(-12)^3 - a(-12)^2-(-12)+28(−12)3−a(−12)2−(−12)+2
➡(-1,728)(8)-a(144)+12+2(−1,728)(8)−a(144)+12+2
➡(-13,824)-144a+14(−13,824)−144a+14
➡(-13,810)-144a(−13,810)−144a
➡(-13810) = 144a(−13810)=144a
a = -95.906a=−95.906
Verification :
8(-12)^3 - (-95.90)(-12)^2-(-12)+2=08(−12)3−(−95.90)(−12)2−(−12)+2=0
➡(-13,810)-144(-95.906)(−13,810)−144(−95.906) = 0
➡(-13,810)-144(-95.906)(−13,810)−144(−95.906) = 0
➡(-13,810) + 13,810(−13,810)+13,810 = 0
0 = 00=0