Physics, asked by sowmyahellokitty, 1 month ago

If x=12t^3_4t^2+6t+8, find the value of velocity at t=4second

Answers

Answered by Anonymous
33

Answer:

  • x = 12t³ - 4t² + 6t + 8

Instantaneous velocity:

\longrightarrow\sf v=\dfrac{dx}{dt} \\

\longrightarrow\sf v=\dfrac{d}{dt}( {12t}^{3}  - 4 {t}^{2}   + 6t + 8)\\

\longrightarrow\sf v=3 \times 12 {t}^{2}  - 2 \times 4 t + 6 + 0\\

\longrightarrow\sf v=36 {t}^{2}  - 8t + 6 \\

At time t = 4 second velocity becomes:

\longrightarrow\sf v=36 {(4)}^{2}  - 8(4)+ 6 \\

\longrightarrow\sf v=36   \times 16 - 32+ 6 \\

\longrightarrow\sf v=576 - 32+ 6 \\

\longrightarrow\sf v=576 - 32+ 6 \\

\longrightarrow\sf v=544+ 6 \\

\longrightarrow\bf v=550 \:  {ms}^{ - 1}  \\

Answered by AestheticSky
14

\\ \maltese \:  \large  \underline \orange{\pmb  {\sf  Correct \:  Question:- }}\\

  • if \sf x = 12t³-4t²+6t+8 then find the value of velocity at t = 4 seconds.

\\ \maltese \:  \large  \underline \orange{\pmb  {\sf  Solution:- }}\\

  • We know that :-

 \leadsto \large\underline{ \boxed  {\pink{{ \sf{velocity =  \frac{dx}{dt} }  }}}} \bigstar\\

  : \implies \sf velocity =  \dfrac{d}{dt} ( {12t}^{3} -  {4t}^{2} + 6t + 8  )\\

 :  \implies \sf velocity = (3 \times 12 {t}^{2})  - (2 \times 4t) + 6 + 0\\

 :  \implies \boxed {\pink{{ \sf velocity = 36 {t}^{2}  - 8t + 6}}} \bigstar\\

 \\ \dag \:  \underline{ \frak{substituting \: given \: value \: of \: time \: in \: above \: equation :  - }}\\

  : \implies \sf velocity = 36( {4})^{2}  - 8(4) + 6\\

  : \implies \sf velocity = 36 \times 16 - 32 + 6\\

 :  \implies \sf velocity = 576 - 32  + 6\\

 :  \implies  \boxed{ \purple{{\sf velocity = 550 \:  m {s}^{ - 1} } }}\bigstar\\

\: \: \: \: \: \: \: \: \: \\\therefore \underline{ \sf 550 \: m {s}^{ - 1} \: is \: the \: required \: answer \:  }\\

Hope it's helpful :D

Similar questions