Math, asked by Ananya9852, 1 year ago

if x =√13 + 2√3, find the value of x-1/x

Answers

Answered by ShuchiRecites
129
Hello Mate!

x =  \sqrt{13}  + 2 \sqrt{3}  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{13} + 2 \sqrt{3}  }  \times  \frac{ \sqrt{13}  - 2 \sqrt{3} }{ \sqrt{13}  - 2 \sqrt{3} }  \\  =  \frac{ \sqrt{13} - 2 \sqrt{3}  }{13 - 12}  \\  =  \sqrt{13}  - 2 \sqrt{3}  \\  \sqrt{13}  + 2 \sqrt{3}  - ( \sqrt{13}  - 2 \sqrt{3} ) \\  = 4 \sqrt{3}

Hope it helps☺!✌
Answered by parmesanchilliwack
73

Answer:

4\sqrt{3}

Step-by-step explanation:

Given,

x = √13 + 2√3,

\implies \frac{1}{x}=\frac{1}{\sqrt{13}+2\sqrt{3}}

=\frac{1}{\sqrt{13}+2\sqrt{3}}\times \frac{\sqrt{13}-2\sqrt{3}}{\sqrt{13}-2\sqrt{3}}

=\frac{\sqrt{13}-2\sqrt{3}}{(\sqrt{13})^2-(2\sqrt{3})^2}

=\frac{\sqrt{13}-2\sqrt{3}}{13-12}

=\frac{\sqrt{13}-2\sqrt{3}}{1}

=\sqrt{13}-2\sqrt{3}

Thus,

x-\frac{1}{x}=\sqrt{13}+2\sqrt{3}-(\sqrt{13}-2\sqrt{3})

=\sqrt{13}+2\sqrt{3}-\sqrt{13}+2\sqrt{3}

=4\sqrt{3}

Similar questions