Math, asked by shrmistha, 1 year ago

if x = √13+2√3find the value of x-1byx

Answers

Answered by abhay022
1
hope it will help you !
Attachments:
Answered by DaIncredible
3
Hey friend,
Here is the answer you were looking for:
x =  \sqrt{13}  + 2 \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{13}  + 2 \sqrt{3} }  \\  \\ on \: rationalizing \: the \: denminator \: we \: get \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{13}  + 2 \sqrt{3} }  \times  \frac{ \sqrt{13}  - 2 \sqrt{3} }{ \sqrt{13}  - 2 \sqrt{3} }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ \sqrt{13}  - 2 \sqrt{3} }{ {( \sqrt{13}) }^{2}  -  {(2 \sqrt{3}) }^{2} }  \\  \\  =  \frac{ \sqrt{13} - 2 \sqrt{3}  }{13 - 12}   \\  \\   \frac{1}{x}  =   \sqrt{13}  - 2 \sqrt{3}  \\  \\ x -  \frac{1}{x}   = ( \sqrt{13}  + 2 \sqrt{3} ) - ( \sqrt{13}  - 2 \sqrt{3} ) \\  \\  x -  \frac{1}{x}  =  \sqrt{13}  + 2 \sqrt{3}  -  \sqrt{13}  + 2 \sqrt{3}  \\  \\  x -  \frac{1}{x}  = 2 \sqrt{3}  + 2 \sqrt{3}  \\  \\  x -  \frac{1}{x}  = 4 \sqrt{3}


Hope this helps!!!!

@Mahak24

Thanks...
☺☺
Similar questions