Math, asked by istolechansphoneuwu, 2 months ago

if x = 17+12√2 then find the value of √x - 1 / √x​

Answers

Answered by sandy1816
2

x = 17 + 12 \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{17 + 12 \sqrt{2} }  \\  \frac{1}{x}  =  \frac{1}{17 + 12 \sqrt{2} }  \times  \frac{17 - 12 \sqrt{2} }{17 - 12 \sqrt{2} }  \\   \frac{1}{x} =  \frac{17 - 12 \sqrt{2} }{289 - 288}  \\   \frac{1}{x}  = 17 - 12 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 17 + 12 \sqrt{2}  + 17 - 12 \sqrt{2}  \\ x +  \frac{1}{x}  = 34 \\ x +  \frac{1}{x}  - 2 = 32 \\ ( { \sqrt{x} })^{2}  + ( { \frac{1}{ \sqrt{x} } })^{2}  - 2 \:  \sqrt{x  }  \:  \frac{1}{ \sqrt{x} }  = 32 \\ ( { \sqrt{x} -  \frac{1}{ \sqrt{x} }  })^{2}  = 32 \\  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  =  \sqrt{32}  = 4 \sqrt{2}

Similar questions