Math, asked by manognapolikepad, 1 month ago

if x= 17+12 root 2, then the value of root x - 1/ root x is​

Answers

Answered by prateekmishra16sl
1

Answer: The value of √x - 1/√x is equal to 4√2

Step-by-step explanation:

x = 17 + 12\sqrt{2}

Expanding RHS,

x = 9 + 8 +12\sqrt{2}

x = (3)^{2}  + (2\sqrt{2} )^{2}  +2(3)(2\sqrt{2})

x = (3 +2\sqrt{2} )^{2}

Taking square root of both sides,

\sqrt{x} = \sqrt{(3 + 2\sqrt{2} )^{2} }

\sqrt{x} = 3+2\sqrt{2}               ...eq(i)

\frac{1}{\sqrt{x} } = \frac{1}{3+2\sqrt{2} }

\frac{1}{\sqrt{x} }  = \frac{1}{(3+2\sqrt{2}) } *\frac{(3-2\sqrt{2}) }{(3-2\sqrt{2} )}

\frac{1}{\sqrt{x} }  = \frac{(3-2\sqrt{2}) }{(3)^{2} -(2\sqrt{2})^{2} }

\frac{1}{\sqrt{x} }  = \frac{(3-2\sqrt{2}) }{(9-8 )}

\frac{1}{\sqrt{x} }  = 3-2\sqrt{2}      ...eq(ii)

Subtracting eq(ii) from eq(i),

\sqrt{x} -\frac{1}{\sqrt{x} }= (3+2\sqrt{2})- (3-2\sqrt{2})  

\sqrt{x} -\frac{1}{\sqrt{x} }= 3+2\sqrt{2}- 3+2\sqrt{2}  

\sqrt{x} -\frac{1}{\sqrt{x} }= 4\sqrt{2}  

#SPJ2

Similar questions