Math, asked by nsjsjsjnsjsks, 9 months ago

If x = 19
y= 18

Then find value of :-
 \frac{x {}^{2}  + y {}^{2}  + xy }{x {}^{3 } - y {}^{3} }

Answers

Answered by umiko28
4

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\red{  {a}^{3} -  {b}^{3}  = (a - b) ( {a}^{2} + ab +  {b}^{2}  )}\\ \\  \sf\pink{here  \: x = 19 \: y = 18}  \\ \\ \sf\red{ \frac{ {x}^{2} +  {y}^{2}  + xy }{ {x}^{3} -  {y}^{3}  } } \\ \\  \sf\green{ =  >  \frac{ {x}^{2} + xy +  {y}^{2}  }{(x - y)( {x}^{2} + xy +  {y}^{2}  )} } \\  \\  \sf\ \orange{ =  >  \frac{1}{(x - y)} } \\  \\ \sf\blue{ =  >  \frac{1}{19 - 18} }  \\ \\ \sf\red{ =  >  \frac{1}{1} } \\  \\ \sf\purple{ =  > 1} \\  \\  \\ \large\boxed{ \fcolorbox{green}{yellow}{hope \: it \: help \: you} }

Answered by Anonymous
5

Step-by-step explanation:

given \:  \\ x = 19 \\ y = 18 \\ Then find value of :-</p><p>\frac{x {}^{2} + y {}^{2} + xy }{x {}^{3 } - y {}^{3} } \\   =  &gt;  \frac{x {}^{2} + y {}^{2} + xy \: }{(x - y)(x {}^{2} + y {}^{2} + xy)}  \\  =  &gt;  \frac{1}{x - y}   \\   =  &gt;  \frac{1}{19 - 18}  \\  \frac{1}{1}  = 1

Similar questions