Math, asked by lakhansharma2409, 2 months ago

If x = 1961, h = 10. yn = 101. Vy, = 8.v2x, = -4.V'y,
= -1.V'y, = -3
then the value of f(1955) obtained from given data by using Newton Gregory
backward interpolation formula is​

Answers

Answered by talasilavijaya
0

Answer:

The value of f(1955) is 5.132

Step-by-step explanation:

Given, x  = 1961, h = 10

And assuming other other values could be y_{0} = 8, \Delta  y_{0} = -4, \Delta^{2}  y_{0} = -1, \Delta^{3}  y_{0} = -3

Given x_{0}=1955,  

so, from x=x_{0} +nh\implies 1961=1955 +n\times 10    

                                   \implies n=\frac{1961-1955}{10}=0.6

Using Newton Gregory forward interpolation formula​ is given by

y_{x} =y_{0}+n\Delta y_{0}+\frac{n(n-1)}{2!}\Delta^{2}   y_{0}+\frac{n(n-1)(n-2)}{3!}\Delta^{3}   y_{0}+...

y_{1955} =8+0.6\times (-4)-\frac{0.6(0.6-1)}{2}-\frac{0.6(0.6-1)(0.6-2)}{6!}\times 3          

        =8-2.4-0.12-0.168=5.132

   

Similar questions