Math, asked by dineshmalviya3679, 8 months ago

If x+1x=3 then, x7+1x7=?​

Answers

Answered by pulakmath007
35

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \sf{ x +  \frac{1}{x}  = 3\: }

TO DETERMINE

 \displaystyle \sf{  {x}^{7}  +  \frac{1}{ {x}^{7} } \: }

CALCULATION

 \displaystyle \sf{ x +  \frac{1}{x}  = 3\: }

  \therefore \:  \: \displaystyle \sf{  {x}^{2}  +  \frac{1}{ {x}^{2} }  \: }

 =  \displaystyle \sf{ \bigg({ x +  \frac{1}{x} \bigg)}^{2}  - 2.x. \frac{1}{x} \: }

 =  \sf{  {3}^{2}  - 2\: }

 = \displaystyle \sf{ 9 - 2}

  = \displaystyle \sf{ 7 }

Again

 \:  \: \displaystyle \sf{  {x}^{3}  +  \frac{1}{ {x}^{3} }  \: }

 =  \displaystyle \sf{ \bigg({ x +  \frac{1}{x} \bigg)}^{3}  - 3.x. \frac{1}{x}  .\bigg({ x +  \frac{1}{x} \bigg)}\: }

 =  \displaystyle \sf{  {3}^{3}  - 9\: }

 =  \displaystyle \sf{ 18\: }

\displaystyle \sf{  {x}^{4}  +  \frac{1}{ {x}^{4} }  \: }

 = \displaystyle \sf{  {\bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg) }^{2}  - 2.  {x}^{2} . \frac{1}{ {x}^{2} }  \: }

 = \displaystyle \sf{  {7}^{2} - 2  \: }

 = \displaystyle \sf{ 49 - 2 \: }

 = \displaystyle \sf{ 47 \: }

Now

 \:  \: \displaystyle \sf{ \bigg(  {x}^{3}  +  \frac{1}{ {x}^{3} }  \bigg) \:  \times }\displaystyle \sf{  \bigg( {x}^{4}  +  \frac{1}{ {x}^{4} } \bigg) = 47 \times 18  \: }

  \implies  \displaystyle \sf{ \bigg(  {x}^{7}  +  \frac{1}{ {x}^{7} }  \bigg) \: + }\displaystyle \sf{  \bigg( {x}^{}  +  \frac{1}{ {x}^{} } \bigg) = 846 \: }

  \implies  \displaystyle \sf{ \bigg(  {x}^{7}  +  \frac{1}{ {x}^{7} }  \bigg) \: + 3= 846 \: }

  \implies  \displaystyle \sf{ \bigg(  {x}^{7}  +  \frac{1}{ {x}^{7} }  \bigg) \: = 846 - 3 \: }

  \implies  \displaystyle \sf{ \bigg(  {x}^{7}  +  \frac{1}{ {x}^{7} }  \bigg) \: = 843\: }

RESULT

  \boxed{  \displaystyle \sf{  \:  \: \bigg(  {x}^{7}  +  \frac{1}{ {x}^{7} }  \bigg) \: = 843\: } \:  \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 2^(x+3) + 2^(x – 4) =129, then find the value of x.

https://brainly.in/question/23183505

Answered by sudebkundu1234
0

Answer

(x⁷+1/x⁷) = 843

• prove that (x⁷+1/x⁷) = 843

Similar questions