Math, asked by surbhipande556, 9 months ago

If (x^-1y^2÷x^3y^-2)^1/3 ÷(x^6y^-3÷x^-2y^-3)^1/2 = x^a y^b, prove that a+b= -1, where x and y are different positive primes.

Answers

Answered by pulakmath007
5

SOLUTION

GIVEN

 \displaystyle \sf{ { \bigg(  \frac{ {x}^{ - 1} {y}^{2}  }{ {x}^{3} {y}^{ - 2}  } \bigg)}^{1}. { \bigg(  \frac{ {x}^{ 6} {y}^{ - 3}  }{ {x}^{2} {y}^{3}  } \bigg)}^{ \frac{1}{2} } =  {x}^{a} {y}^{b}  }

TO PROVE

a + b = -1, where x and y are different positive primes.

FORMULA TO BE IMPLEMENTED

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{3. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

 \displaystyle \sf{4. \:  \:  {a}^{0}  = 1}

EVALUATION

 \displaystyle \sf{ { \bigg(  \frac{ {x}^{ - 1} {y}^{2}  }{ {x}^{3} {y}^{ - 2}  } \bigg)}^{1}. { \bigg(  \frac{ {x}^{ 6} {y}^{ - 3}  }{ {x}^{2} {y}^{3}  } \bigg)}^{ \frac{1}{2} } =  {x}^{a} {y}^{b}  }

 \displaystyle \sf{ \implies { \bigg(   {x}^{ - 1 - 3} {y}^{2 + 2}     \bigg)}^{1}. { \bigg(  {x}^{ 6 - 2} {y}^{ - 3 - 3}  }{    \bigg)}^{ \frac{1}{2} } =  {x}^{a} {y}^{b}  }

 \displaystyle \sf{ \implies { \bigg(   {x}^{ - 4} {y}^{4}     \bigg)}^{1}. { \bigg(  {x}^{ 4} {y}^{ - 6}  }{    \bigg)}^{ \frac{1}{2} } =  {x}^{a} {y}^{b}  }

 \displaystyle \sf{ \implies { \bigg(   {x}^{ - 4} {y}^{4}     \bigg)}^{1}. { \bigg(  {x}^{ 2} {y}^{ - 3}  }{    \bigg)}^{2 \times  \frac{1}{2} } =  {x}^{a} {y}^{b}  }

 \displaystyle \sf{ \implies { \bigg(   {x}^{ - 4} {y}^{4}     \bigg)}^{1}. { \bigg(  {x}^{ 2} {y}^{ - 3}  }{    \bigg)}^{1 } =  {x}^{a} {y}^{b}  }

 \displaystyle \sf{ \implies { \bigg(   {x}^{ - 4 + 2} {y}^{4 - 3}     \bigg)} =  {x}^{a} {y}^{b}  }

 \displaystyle \sf{ \implies  {x}^{a} {y}^{b}  =  {x}^{ - 2} {y}^{1}    }

Comparing both sides we get

a = - 2 & b = 1

∴ a + b = - 2 + 1 = - 1

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Answered by sgudlamani
4

Step-by-step explanation:

answer is proved a and b = 1

and x and y are diffrent positive number

Attachments:
Similar questions