If x = √2 + 1 / √-1 and y = √ 2 -1 / √ -1 then find the value of x^2 + xy + y^2.
Answers
Answer:
=1+3+2root2+3-2root2=3+3+1=7
Step-by-step explanation:
just use a square+ b square +2ab = a+b whole sqaure
Answer:
35
Step-by-step explanation:
Given, x = (√2 + 1)/(√2 - 1)
Now, Multiply by (√2 + 1) in numerator and denominator, we get
x = {(√2 + 1)*(√2 + 1)}/{(√2 - 1)*(√2 + 1)}
=> x = (√2 + 1)² /{(√2)² - 1}
=> x = {(√2)² + 1 + 2√2)}/(2 - 1)
=> x = 2 + 1 + 2√2
=> x = 3 + 2√2
Again given, y = (√2 - 1)/(√2 + 1)
Now, Multiply by (√2 - 1) in numerator and denominator, we get
y = {(√2 - 1)*(√2 - 1)}/{(√2 - 1)*(√2 + 1)}
=> y = (√2 - 1)² /{(√2)² - 1}
=> y = {(√2)² + 1 - 2√2)}/(2 - 1)
=> y = 2 + 1 - 2√2
=> y = 3 - 2√2
Again x*y = (3 + 2√2)*(3 - 2√2)
= 9 - (2√2)2
= 9 - 8
= 1
Now,
x² + y² + x*y
= (3 + 2√2)² + (3 - 2√2)² + 1
= 9 + 8 + 12√2 + 9 + 8 - 12√2 + 1
= 9 + 8 + 9 + 8 + 1
= 35
So,
x² + y² + x*y = 35
Hope it helps!