Math, asked by jit3011, 1 month ago

If x = (√2 + 1)/(√2 - 1) and x-y=4√2 then what is the value of x^4+y^4 ?​

Answers

Answered by UtsavPlayz
1

x =  \dfrac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 }  \times  \dfrac{ \sqrt{2} + 1 }{ \sqrt{2}  + 1}

x =  \dfrac{ (\sqrt{2}  + 1) ^{2} }{ \sqrt{2 }  ^{2}  -  {1}^{2} }

x =  \dfrac{2 + 1 + 2  \sqrt{2} }{2 - 1}  = 3 + 2 \sqrt{2}

x - y = 4 \sqrt{2}  \\ y = 3 + 2 \sqrt{2}  - 4 \sqrt{2}  \\ y = 3 - 2 \sqrt{2}

 {x}^{4}  +  {y}^{4}  \\  =  ({x}^{2} ) ^{2}  + ( {y}^{2} ) ^{2}  \\  =(  ( 3 + 2 \sqrt{2} ) ^{2} ) ^{2}  + ((3 - 2 \sqrt{2} ) ^{2} ) ^{2}  \\  =( 9 + 8 + 12 \sqrt{2} ) ^{2}  + (9 + 8 - 12 \sqrt{2} ) ^{2}  \\  = (17 + 12 \sqrt{2} ) ^{2}  + (17 - 12 \sqrt{2} ) ^{2}  \\  = 189 + 288 + 408 \sqrt{2}  + 189  + 288- 408 \sqrt{2}  \\  = 954

Please Follow♥️

Similar questions