If x = √2+ 1/ √2−1 and y =√2− 1 /√2+ 1 . Find the value of x^2 + y^2 + xy
Answers
Answered by
0
=(root2+1/root2-1)^2+(root2-1/root2+1)^2+(root2+1/root2-1)×(root2-1/root2+1)
=(2+1+2root2/2+1-2root2)+(2+1-2root2/2+1+2root2)
=3+2root2+3-2root2/9-8
=9/1=9
I think this answer is correct.if so mark as brainliest answer if u want plz
=(2+1+2root2/2+1-2root2)+(2+1-2root2/2+1+2root2)
=3+2root2+3-2root2/9-8
=9/1=9
I think this answer is correct.if so mark as brainliest answer if u want plz
Answered by
27
Answer:
⇒ x² + y² + xy = 35
Step-by-step explanation:
Given ,
To Find :-
⇒x² + y² + xy
Solution :-
Rationalising 'x' :-
Rationalising 'y' :-
Hence ,
⇒ x² + y² + xy = ( x + y )² - xy
⇒[( 3 + √2) + ( 3 - √2 )]² - ( 3+ 2√2) ( 3 - 2√2 )
⇒(6)² - [(3)² -(2√2)²]
⇒36 - ( 9 - 8 )
⇒36 - 1
⇒ 35
Similar questions