Math, asked by chakori8786, 11 months ago

If x = √2 + 1/√2 - 1 and y = √2 - 1/ √2+1 find value of x^2 y^2 + xy

Answers

Answered by mysticd
0

Answer:

2

Explanation:

x=(√2+1)/(√2-1)

y= (√2-1)/(√2+1)

Now,

xy = [(√2+1)/(√2-1)][(√2-1)/(√2+1)]

=> xy = 1

Therefore,

x²y²+xy

= (xy)²+xy

= 1²+1

= 2

••••

Answered by Anonymous
27

\huge\underline\mathfrak{Answer:}

We have

x =  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}  \\  \\  =  \frac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 }  \times  \frac{ \sqrt{2} + 1 }{ \sqrt{2} + 1 }  \\  \\  =  \frac{( \sqrt{2} + 1) {}^{2}  }{( \sqrt{2}) {}^{2} - (1) {}^{2}   }  \\  \\  =  \frac{2 + 1 + 2 \sqrt{2} }{2 - 1}  \\  \\  = 3 + 2 \sqrt{2}  \\  \\ y =  \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 }  \\  \\  =  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  - 1}  \\  \\  =   \frac{( \sqrt{2} - 1) {}^{2}  }{( \sqrt{2} ) {}^{2} -  {(1)}^{2}  }   \\  \\  =  \frac{2 + 1 - 2 \sqrt{2} }{2 - 1}  \\  \\  = 3 - 2 \sqrt{2}

•°• x + y = ( 3 + 2√2) + (3-2√2)

\implies x + y = 6

and xy = ( 3 + 2√2)(3-2√2)

\impliesxy = (3)² - (2√2)²

\implies xy = 9 - 8 = 1

Now, + + xy = ( + + 2xy) - xy

= (x + y)² - xy

= (6)² - (1)

= 36 - 1

= 35.

Similar questions