Math, asked by jaiprakashmaan761, 2 months ago

If x=√2+1/√2-1 and y=√2-1/√2+1, find x²+y²+xy.​

Answers

Answered by Anonymous
15

{\large{\underline{\underline{\pmb{\frak{Let's \:understand\:the\:concept :-}}}}}}

As per the given information, we have the values of x and y, We need to rationalize the values, By Multiplying the values with its rationalising factors, After rationalising the values of x and y, we can find the the value of the given equation i.e x² + y²+ xy. by putting the rationalized values in the equation.

{\large{\underline{\underline{\pmb{\frak{Given:-}}}}}}

\sf \bullet \;\; x =  \dfrac{ \sqrt{2 } + 1 }{ \sqrt{2} - 1 } \:  , \:  y=\dfrac{ \sqrt{2 }  -  1 }{ \sqrt{2}  + 1 },

{\large{\underline{\underline{\pmb{\frak{solution:-}}}}}}

Rationalising the value of x,

\sf : \;\implies  \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}

\sf : \;\implies  \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}  \times \dfrac{ \sqrt{2}    + 1}{ \sqrt{2}   +  1}

\sf : \;\implies  \dfrac{  ({\sqrt{2}  + 1)}^{2} }{ ({2  - 1})}

\sf : \;\implies  \dfrac{(  {\sqrt{2}  + 1})^{2} }{ {1}}

\sf : \;\implies  (  {\sqrt{2}  + 1})^{2}

\sf : \;\implies   {( \sqrt{2} )}^{2}  +  {(1)}^{2}  + 2( \sqrt{2} )(1)

\sf : \;\implies  2 + 1 +2  \sqrt{2}

\sf : \;\implies  3 +2  \sqrt{2}

Now, Rationalising the value of y,

\sf : \;\implies \dfrac{ \sqrt{2 }  -  1 }{ \sqrt{2}  + 1 }

\sf : \;\implies \dfrac{ \sqrt{2 }  -  1 }{ \sqrt{2}  + 1 } \times \dfrac{ \sqrt{2 }  -  1 }{ \sqrt{2}   -  1 }

\sf : \;\implies \dfrac{ ( {\sqrt{2 }  -  1 )}^{2}}{ {2}   - 1 }

\sf : \;\implies  (  {{\sqrt{2}   -  1})^{2} }

\sf : \;\implies   {( \sqrt{2} )}^{2}  +  {(1)}^{2}   -  2( \sqrt{2} )(1)

\sf : \;\implies  2 + 1 - 2 \sqrt{2}

\sf : \;\implies  3 - 2 \sqrt{2}

Now, solving the equation by putting the values,

  :  \implies  \sf  {x}^{2} + {y}^{2} +xy

{ :  \implies  \sf  {(3  +  2 \sqrt{2} )}^{2} + {(3 - 2 \sqrt{2} )}^{2} +(3  +  2 \sqrt{2} ) (3   -   2 \sqrt{2} )}

{ :  \implies  \sf  17 + 12\sqrt{2} + {(3 - 2 \sqrt{2} )}^{2} +(3  +  2 \sqrt{2} ) (3   -   2 \sqrt{2} )}

{ :  \implies  \sf  17 + 12\sqrt{2} + 17 - 12\sqrt{2} +(3  +  2 \sqrt{2} ) (3   -   2 \sqrt{2} )}

On cancelling 12√2 & -12√2,

{ :  \implies  \sf  17 + 17 +(3  +  2 \sqrt{2} ) (3   -   2 \sqrt{2} )}

{ :  \implies  \sf  34 +(3  +  2 \sqrt{2} ) (3   -   2 \sqrt{2} )}

{ :  \implies  \sf  34 + 1}

\boxed{\bf{ \leadsto{ 35  }}}


rsagnik437: Great! :)
Anonymous: Nice!
Similar questions