if x= √2+1/√2-1 and y = √2-1/√2+1 than find x^2+y^2+2xy
Answers
Answered by
2
Answer :
Given,
x = (√2 + 1)/(√2 - 1) and y = (√2 - 1)/(√2 + 1)
Now, x + y
= (√2 + 1)/(√2 - 1) + (√2 - 1)/(√2 + 1)
= {(√2 + 1)(√2 + 1) + (√2 - 1)(√2 - 1)}/{(√2 - 1)(√2 + 1)}
= {(√2 + 1)² + (√2 - 1)²}/(2 - 1),
since (a + b)(a - b) = a² - b²
= (2 + 2√2 + 1 + 2 - 2√2 + 1)/1
= 6
Now,
x² + y² + 2xy
= (x + y)²
= 6²
= 36
#MarkAsBrainliest
Given,
x = (√2 + 1)/(√2 - 1) and y = (√2 - 1)/(√2 + 1)
Now, x + y
= (√2 + 1)/(√2 - 1) + (√2 - 1)/(√2 + 1)
= {(√2 + 1)(√2 + 1) + (√2 - 1)(√2 - 1)}/{(√2 - 1)(√2 + 1)}
= {(√2 + 1)² + (√2 - 1)²}/(2 - 1),
since (a + b)(a - b) = a² - b²
= (2 + 2√2 + 1 + 2 - 2√2 + 1)/1
= 6
Now,
x² + y² + 2xy
= (x + y)²
= 6²
= 36
#MarkAsBrainliest
Similar questions