Math, asked by susantadutta797, 4 months ago

If x= √2+1/√2-1, then the value of x^2+1/x^2​

Answers

Answered by mathdude500
4

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

  \boxed{ \:{1. \: \tt \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

\boxed{ \:{2. \: \tt \:  {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}   -  2xy}}

\boxed{ \:{3. \: \tt \:  {(x + y)}^{2} +  {(x - y)}^{2}   = 2( {x}^{2}  +  {y}^{2} )}}

\boxed{ \:{4. \: \tt \:  {(x + y)}(x - y)  =  {x}^{2}   -   {y}^{2}  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

☆ Consider,

\tt \: \tt \:  ⟼ x \:  = \dfrac{ \sqrt{2} + 1 }{ \sqrt{2}  - 1}

☆ On rationalizing the denominator, we get

\tt \:  ⟼ x \:  = \dfrac{ \sqrt{2} + 1 }{ \sqrt{2}  - 1}  \times \dfrac{\sqrt{2} + 1}{\sqrt{2} + 1}

\tt \:  ⟼ \: x \:  = \dfrac{ {(\sqrt{2} + 1)}^{2} }{ {( \sqrt{2} )}^{2} -  {1}^{2}  }

\tt \:  ⟼ \: x \:  = \dfrac{ {( \sqrt{2}) }^{2} + 1 - 2 \times 1 \times  \sqrt{2}  }{2 - 1}

\tt \:  ⟼ \: x \:  = 3  +  2 \sqrt{2}

☆ Now, Consider

\tt \:  ⟼ \: \dfrac{1}{x}  = \dfrac{1}{3  +  2 \sqrt{2} }

\tt \:  ⟼ \: on \: rationalizing \: the \: denominator \\ \tt \:  ⟼ \: \dfrac{1}{x}  \:  = \dfrac{1}{3  +  2 \sqrt{2} }  \:  \times \dfrac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt \:  ⟼ \: \dfrac{1}{x}  \:  = \dfrac{3 - 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }

\tt \:  ⟼ \: \dfrac{1}{x}  \:  = \dfrac{3 - 2 \sqrt{2} }{9 - 8}

\tt \:  ⟼ \: \dfrac{1}{x}  \:  =  \: 3 - 2 \sqrt{2}

\tt \:  ⟼☆ \:  Consider  \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }

\tt \:   =  \:  { \bigg(3 + 2 \sqrt{2} \bigg) }^{2}  +  { \bigg(3 - 2 \sqrt{2} \bigg) }^{2}

\tt \:   =  \: 2 \bigg( {(3)}^{2}  +  {(2 \sqrt{2} )}^{2} \bigg)

\tt \:   =  \: 2(9 + 8) \:  = 2 \times 17 \:  = 34

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\tt{Hence,  \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 34}}}}

Answered by yourlovekwame
1

Answer:

\frac{\sqrt{2+1} }{\sqrt{2-1} } = x

if x =x^{2} + \frac{1}{x^{2} } then

x = (\frac {\sqrt{2+1} }{\sqrt{2-1} } ) ^{2} + 1 ÷ (\frac {\sqrt{2+1} }{\sqrt{2-1} } ) ^{2}

x^{2}  + \frac{1}{x^{2} }= (\frac{3}{1} ) + (\frac{1}{\frac{3}{1} } )

the value of x^{2}  + \frac{1}{x^{2} } = \frac{9+1}{ 3} = \frac{10}{3}

Step-by-step explanation:

Similar questions