if x = √2-1/√2+2 and y = √2+1/√2-1 find x + y
Answers
Answer:
x^2+y^2+xy=35
Step-by-step explanation:
Given : x=\frac{\sqrt2+1}{\sqrt2-1} and y=\frac{\sqrt2-1}{\sqrt2+1}
To find : The value of x^2+y^2+xy
Solution :
First we solve the value of x and y be rationalizing,
The value of x,
x=\frac{\sqrt2+1}{\sqrt2-1}
x=\frac{\sqrt2+1}{\sqrt2-1}\times\frac{\sqrt2+1}{\sqrt2+1}
x=\frac{(\sqrt2+1)^2}{(\sqrt2)^2-1^2}
x=\frac{2+1+2\sqrt2}{2-1}
x=3+2\sqrt2
The value of y,
y=\frac{\sqrt2-1}{\sqrt2+1}
y=\frac{\sqrt2-1}{\sqrt2+1}\times\frac{\sqrt2-1}{\sqrt2-1}
y=\frac{(\sqrt2-1)^2}{(\sqrt2)^2-1^2}
y=\frac{2+1-2\sqrt2}{2-1}
y=3-2\sqrt2
Now, Substitute the value of x and y in the expression
x^2+y^2+xy
=(3+2\sqrt2)^2+(3-2\sqrt2)^2+(3+2\sqrt2)(3-2\sqrt2)
=9+8+12\sqrt2+9+8-12\sqrt2+3^2-(2\sqrt2)^2
=17+17+9-8
=35
Therefore, x^2+y^2+xy=35
Step-by-step explanation:
please Mark has brainliest answer (❁´◡`❁)(♥_♥)(❁´◡`❁)(♥_♥)(❁´◡`❁)(♥_♥)