Math, asked by Evraj, 1 year ago

if (x^2)+(1/×^2)=51 find ((×)-(1/x) and (x)^3-(1/x)^3

Answers

Answered by HimanshuR
4

x {}^{2} +  \frac{1}{x {}^{2} } = 51 \\ (x -  \frac{1}{x}   ) {}^{2}  = x {}^{2}  +  \frac{1}{x {}^{2} }  - 2 \times x \times  \frac{1}{x}  \\  = x {}^{2}  +  \frac{1}{x {}^{2} }  - 2 \\  = 51  - 2 \\  = 49 \\ (x -  \frac{1}{x} ) {}^{2}  = 49 \\ x -  \frac{1}{x} =  \sqrt{49}   \\ x -  \frac{1}{x} = plus \: minus( +  - )\: 7
x {}^{3} - \frac{1}{x {}^{3} } = (x -  \frac{1}{x}  ) {}^{ {}^{3 } }  + 3  x  \times   \frac{1}{x} (x -  \frac{1}{x} ) \\  = (7) {}^{3} + 3 \times 7 \\  = 343 + 21 \\  = 364
So,
x -  \frac{1}{x}  =( +  -  7) \\ x {}^{3}  -  \frac{1}{x {}^{3} }  = 364

Evraj: thanks
Similar questions