Math, asked by rashmirathore3167, 2 months ago

if x^2 + 1/2 = 7 find the value of x - 1/x​

Answers

Answered by xyz7792
0

Answer:

151

Step-by-step explanation:

151

151151151151151151151

Answered by arpanaial06
1

Answer:

x^2 +  \frac{1}{2}  = 7

x^2  =  7 -  \frac{1}{2}

x^2  =  \frac{14 - 1}{2}

x^2  =  \frac{13}{2}

x =  \frac{ \sqrt{13} }{ \sqrt{2} }

or

x =  \sqrt{ \frac{13}{2} }

then,

x +  \frac{1}{x}  =  \frac{ \sqrt{13} }{ \sqrt{2} } +  \frac{1}{ \sqrt{ \frac{13}{2} } }   =   \frac{ \sqrt{13} }{ \sqrt{2} } +  \frac{ \sqrt{2} }{ \sqrt{13} }

x +  \frac{1}{x}  =  \frac{13 + 2}{ \sqrt{13 }  \times  \sqrt{2}  }

x +  \frac{1}{x}  =   \frac{15}{ \sqrt{13 \times 2} }  =  \frac{15}{ \sqrt{26} }

hope it will help you

Similar questions